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Abstract

Wolbachia are intracellular bacteria which are very widely distributed among arthropods. In many insect species Wolbachia are

known to induce cytoplasmic mating incompatibility (CI). It has been suggested that Wolbachia could promote speciation in their

hosts if parapatric host populations are infected with two different Wolbachia strains causing bidirectional mating incompatibilities.

A necessary condition for this speciation scenario to work is that the two Wolbachia strains can stably coexist. The following study

investigates this problem analysing a mathematical model with two host populations and migration between them. We show that the

stability of bidirectional CI can be fully described in terms of a critical migration rate which is defined as the highest migration below

which a stable coexistence of two Wolbachia strains is possible. For some special cases we could derive analytical solutions for the

critical migration rate; for the general case estimations of the critical migration rate are given. Our main finding is that bidirectional

CI can stably persist in the face of high migration and can be as high as over 15% per generation for CI levels observed in nature.

These results have implications for the potential of Wolbachia to promote genetic divergence and speciation in their hosts.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Speciation is an evolutionary process by which two
parts of one species genetically diverge and eventually
separate in two distinct gene pools. Traditionally,
researchers interested in speciation focused on the
divergence of nuclear genes (Coyne and Orr, 2004).
But recently, investigations suggest that cytoplasmic
inherited elements like intracellular bacteria Wolbachia

might also play an important role in speciation (Werren,
e front matter r 2005 Elsevier Ltd. All rights reserved.
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1998; Bordenstein, 2003). In parasitic wasps for example
it was shown that, under laboratory conditions, both
strains (Perrot-Minnot et al., 1996) and species (Borden-
stein et al., 2001) can become fully reproductively
isolated when they are infected with different Wolba-

chia types. To estimate the potential role of Wolba-

chia in speciation processes of their host it is important
to know how stable such infection patterns of cytoplas-
mic divergence are. In this article, we analyse theoreti-
cally under which conditions cytoplasmic divergence can
persist and determine analytical criteria for the stable
coexistence of two Wolbachia strains.

Wolbachia is a widespread group of a-proteobacteria,
found in approximately 20–70% of all insect species
(Werren and Windsor, 2000; Jeyaprakash and Hoy,
2000). They are also common in isopods (Bouchon
et al., 1998), mites (Breeuwer, 1997) and nematodes

www.elsevier.com/locate/yjtbi
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(Bandi et al., 1998). These bacteria can manipulate the
reproduction system of their host in various ways. In
some species Wolbachia infections induce a cytoplasmic
mating incompatibility, in others feminization of genetic
males or a phenomenon called male-killing (for reviews
of Wolbachia see Werren, 1997; Bourtzis and Miller,
2003). Wolbachia are predominantly inherited through
the cytoplasm of the egg, but not via sperm. As a result,
transmission is maternal, and the induced reproductive
alterations are generally advantageous to the bacteria
because they either increase fitness or proportion of the
transmitting (female) sex (Werren and O’Neill, 1997).
The most common form of Wolbachia induced

reproductive parasitism is cytoplasmic mating incom-
patibility (see Bourtzis et al., 2003 for a review).
Cytologically, the paternal chromosomes condense
improperly during the first and subsequent mitoses
(O’Neill and Karr, 1990; Reed and Werren, 1995),
typically resulting in the death of the zygote. There are
two basic forms of cytoplasmic incompatibility (CI),
unidirectional and bidirectional CI. Unidirectional CI
involves one Wolbachia strain. Mating incompatibilities
occur if uninfected eggs are fertilized by sperm from
infected males. Bidirectional CI involves two Wolba-

chia strains. Here, incompatibilities occur if the mating
partners are infected with different Wolbachia strains.
CI can be interpreted as a ‘‘modification-rescue’’ system
(Werren, 1997). Wolbachia modify the sperm, and the
same (or similar) strain of bacteria must be present in
the egg to rescue the modification. The modification-
rescue model can explain the basic patterns of CI.
Unidirectional incompatibility occurs when the sperm is
modified but bacteria are not present in the egg to rescue
the modification, whereas the reciprocal cross
ðuninfected male� infected femaleÞ is compatible. Bi-
directional incompatibility presumably occurs when
different strains of Wolbachia have different modifica-
tion-rescue systems. The biochemical mechanism of
CI is still unknown. But recent studies suggest that CI
might be due to a disruption of coordination in timing
of the male and female pronuclei during the first mitosis
(Tram and Sullivan, 2002).
The dynamic of CI-inducing Wolbachia was investi-

gated using mathematical modeling. Crucial for under-
standing the dynamic is that selection on CI acts
frequency dependently. Basic models show that an
invasion of CI in a panmictic host population is possible
even if infected females do not transmit the infection to
all of their offspring (incomplete transmission rate) and
Wolbachia causes a fecundity reduction in infected
females (Caspari and Watson, 1959; Turelli, 1994).
Further, frequency dependence explains why bidirec-
tional CI can persist between parapatric populations in
face of migration (Telschow et al., 2002b; Keeling et al.,
2003). The spatial spread of a Wolbachia infection was
documented experimentally and mathematically mod-
eled (Turelli and Hoffmann, 1991; Hoffmann and
Turelli, 1997). Interestingly such an invasion causes a
bottleneck for mitochondrial DNA (Turelli et al., 1992).
Cytoplasmic incompatibility has attracted attention

as a possible mechanism for rapid speciation (Laven,
1959; Werren, 1998; Hurst and Schilthuizen, 1998;
Bordenstein, 2003). The basic idea is that CI may
sufficiently prevent or reduce gene flow between
populations to permit divergence and eventual specia-
tion. This view is supported by some empirical studies
showing that many insect species harbor different strains
of Wolbachia, often in different geographic regions
(Merc-ot et al., 1995; Baudry et al., 2003; Keller et al.,
2004). Further, crossing experiments have shown
bidirectional- CI between strains and closely related
species infected with different Wolbachia (e.g. Laven,
1967; Guillemaud et al., 1997; Breeuwer and Werren,
1990; Perrot-Minnot et al., 1996; Shoemaker et al., 1999;
Bordenstein et al., 2001). Wolbachia are a major
isolating factor between Nasonia species under labora-
tory conditions (Breeuwer and Werren, 1990; Borden-
stein et al., 2001); species occur both sympatrically
(Darling and Werren, 1990) and possibly parapatrically
(Werren, unpublished). However, in no system has it has
been explicitly shown that CI reduces or prevents gene
flow in natural populations. The effect of Wolbachia on
the nuclear host genome has been analysed theoretically.
It has been shown that uni- and bidirectional CI can
strongly reduce the gene flow between parapatric host
populations even if the transmission of Wolbachia and
the level of incompatibility are incomplete (Telschow
et al., 2002a, b). Further, recent modeling shows that
Wolbachia induced bidirectional CI can select for
premating isolation and so reinforce genetic divergence
between differently infected host populations (Telschow
et al., 2005).
In this article we investigate under which conditions a

stable coexistence of the two Wolbachia strains is
possible. We analyse the Wolbachia dynamic in two
host populations which are connected by migration. We
show that a stable coexistence of two Wolbachia strains
is possible up to a critical migration rate. This critical
migration rate is described analytically. Our results are
therefore a major improvement in comparison to earlier
studies which are purely simulation based (Telschow
et al., 2002b; Keeling et al., 2003). The analytical results
given below allows to make general conclusions and is
therefore a solid base for discussions about the potential
role of Wolbachia in speciation.
2. Mainland–island model

We first discuss a mainland–island model. This is
simple enough to be solved analytically, but also has
enough complexity to explain the central term of the
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paper, the critical migration rate. Here, the term
mainland–island model is used for a two population
model where migration is only in one direction, from the
mainland population to the island population, but
where there is no migration in the opposite direction.
We assume that individuals in the populations can be

infected with either of two Wolbachia strains that cause
bidirectional CI. Double infections are not considered.
We follow Turelli (1994) to describe the Wolbachia dy-
namic. Each Wolbachia strain has its own level of
cytoplasmic incompatibility, lA and lB respectively.
These are defined as follows: lA is the fraction offspring
that dies in a mating between a male infected with
Wolbachia A and a female infected with Wolbachia B; lB

is the fraction offspring that dies in the reciprocal
mating (Wolbachia B male and Wolbachia A female). As
noted above the transmission of Wolbachia is strictly
maternal. In this and the next section we assume
complete transmission, i.e. all offspring inherit the
Wolbachia infection of their mother. The case of
incomplete transmission is discussed in Section 4.
Our model includes a starting condition where the

mainland population is infected with Wolbachia A and
the island population is infected with Wolbachia B.
Subsequently a constant migration rate m from the
mainland to the island is introduced (0pmp1). Because
of complete Wolbachia transmission, only two cytotypes
exist, Wolbachia A and Wolbachia B. Uninfected in-
dividuals do not occur. Therefore the system is fully
determined by the frequency of Wolbachia A on the
island. We denote with pA and p0

A the frequencies of
Wolbachia A on the island in two subsequent genera-
tions. Then the dynamic of both Wolbachia strains can
be described by the following difference equation:

p0
A ¼

pAð1� mÞ½1� ð1� pAÞlB�

1� ðlA þ lBÞpAð1� pAÞ
þ m. (1)
2.1. Fixpoints

We analyse the mainland–island model by determine
its fixpoints p%: To do so we have to solve Eq. (1) for
p% ¼ pA ¼ p0

A: This leads to the following cubic equa-
tion:

ðlA þ lBÞðp
%Þ

3
� ðlA þ 2lB þ mlAÞðp

%Þ
2

þ ðmlA þ lB þ mÞp% � m ¼ 0. ð2Þ

This cubic equation can be solved analytically and has
the following three solutions:

p%

1 ¼ 1, (3)

p%

2;3 ¼
mlA þ lB 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmlA þ lBÞ

2
� 4mðlA þ lBÞ

q
2ðlA þ lBÞ

. (4)
When the square root in Eq. (4) is positive all three
fixpoints are real numbers. Standard fixpoint analysis
shows that p%

1 and p%

3 are stable. They can therefore be
interpreted as stable equilibrium frequencies. p%

1 de-
scribes a situation where Wolbachia A has spread to
fixation on the island, p%

3 the situation where Wolbachia

A could not go to fixation despite permanent migration
of Wolbachia A individuals from the mainland. We
note that the latter describes a stable coexistence of
Wolbachia A and Wolbachia B. Fixpoint p%

2 is unstable
and can be interpreted as a threshold frequency
(unstable equilibrium frequency). If the frequency of
Wolbachia A on the island was above this threshold
at the beginning, then the system converges to p%

1 ;
but if it was below p%

2 it converges to p%

3 : When
the square root in Eq. (4) is negative the fixpoints p%

2

and p%

3 are imaginary numbers. In this case p%

1 ¼ 1 is
the only stable equilibrium frequency and Wolbachia

A goes to fixation on the island for arbitrary starting
conditions.

2.2. Critical migration rate

The stability analysis given above shows that a stable
coexistence of both Wolbachia strains is possible if and
only if the fixpoint p%

3 is a positive real number. Such a
stable coexistence is possible up to a so-called critical
migration rate. The critical migration rate for given CI
levels lA and lB is defined as the migration rate below
which both Wolbachia strains can stably coexist but
above which coexistence is not possible. The existence of
the critical migration rate can be generally proven. This
follows from the strictly monotone decrease of the
square root in Eq. (4), if interpreted as a function of m.
Fig. 1 illustrates the critical migration rate by showing
the equilibrium frequencies as a function of the
migration rate. For low migration rates three equili-
brium frequencies exist. With increasing migration the
equilibrium frequency p%

3 increases and the threshold
frequency p%

2 decreases. The distance between both
becomes smaller until both become equal at the critical
migration rate of mk � 0:148: If the migration rate is
higher then there is only one stable equilibrium
frequency, p%

1 ¼ 1:
For the mainland–island model considered here, the

critical migration rate can be solved analytically. We
remark that the critical migration rate mk is the
migration rate for which p%

2 ¼ p%

3 : Therefore, we get
from Eq. (4) the following criterion for mk:

ðmklA þ lBÞ
2
� 4mkðlA þ lBÞ ¼ 0. (5)

Eq. (5) has two solutions if the CI levels lA and lB are
positive. It can be shown that one solution is between
zero and one whereas the other is not. The latter
solution cannot be the critical migration rate because we
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Fig. 1. The real fixpoints (equilibrium frequencies) of the mainland–is-

land model as a function of the migration rate: (1) the stable fixpoint

p%
1 (��), at which Wolbachia A is fixed in mainland and island, (2) the

stable fixpoint p%
3 (—), at which Wolbachia A could not go to fixation

on the island, and (3) the unstable fixpoint p%
2 (�  �), which can be

interpreted as a thresholds frequency. Depending whether the system

starts with Wolbachia A frequencies above or below p%
2 it converges to

p%
1 or p%

3 : This is indicated by the vertical arrows. Especially marked is
the critical migration rate for which p%

2 ¼ p%
3 holds. The critical

migration rate is the highest migration rate below which a stable

coexistence of the two Wolbachia strains is possible. Parameters are

lA ¼ lB ¼ 0:9:

g

Fig. 2. The critical migration rates as a function of the CI levels lA and

lB for the mainland–island model and complete transmission rate.

Critical migration rates were calculated with formula (6).

A. Telschow et al. / Journal of Theoretical Biology 235 (2005) 265–274268
assumed 0pmp1: Therefore the first solution must be
the critical migration rate. This leads to the following
analytical solution for mk:

mk ¼
2ðlA þ lBÞ � lAlB � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlA þ lBÞ

2
� l2AlB � lAl2B

q
l2A

.

(6)

For symmetric CI level, l ¼ lA ¼ lB; this formula
becomes more simple:

mk ¼
4� l � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2l

p

l
. (7)

Fig. 2 shows the critical migration rate in a 3-D plot as a
function of the CI levels lA and lB: First, we discuss
Wolbachia A, the Wolbachia strain of the migrants. As
can be seen, the critical migration rate decreases with
increasing lA: A stable coexistence is more likely for low
lA because the residents in the island suffer less if lA is
low. Wolbachia B has the opposite effect. Low values of
lB favor the reproductive success of migrants because
they suffer less from incompatibility matings with
residents. Therefore, the critical migration rate increases
with increasing lB: The figure shows further that the
critical migration rate cannot be bigger than mk ¼ 0:25:
This value is achieved for the minimal CI level of
Wolbachia A, lA ¼ 0; and the maximal CI level of
Wolbachia B, lB ¼ 1: So there is a universal upper
threshold for the critical migration rate.
3. Model with two-way migration

In this section, we analyse two populations with
migration in both directions. As in the previous section
individuals can be infected with either of two Wolba-

chia strains that cause bidirectional CI. Further, the
transmission rates of both strains are complete. We
denote with pA and qA the frequencies of Wolbachia A in
population 1 and 2 in one generation. Then the
frequencies of Wolbachia A in the next generation, p0

A

and q0
A; are given by the following equations:

p0
A ¼ ð1� m1ÞGðpAÞ þ m1GðqAÞ, (8)

q0
A ¼ ð1� m2ÞGðqAÞ þ m2GðpAÞ, (9)

where the function G is defined as

GðxÞ ¼
xð1� ð1� xÞlBÞ

1� ðlA þ lBÞxð1� xÞ
. (10)

Model (8)–(10) naturally reduces to the mainland–island
model when m1 ¼ 0: Note that in the mainland–island
model a starting condition was assumed where Wolba-

chia A is fixed at the mainland. As shown in the previous
section, this starting condition limits the number of
fixpoints to three. In this section we consider arbitrary
starting conditions and show that under these circum-
stances model (8)–(10) has up to nine fixpoints.
The fixpoints of model (8)–(10) are 2-D vectors of the

form ðp%; q%Þ whose components are the frequencies of
Wolbachia A in population 1 and 2, respectively. To
determine the fixpoints we have to solve the model for
ðpA; qAÞ ¼ ðp0

A; q
0
AÞ: This reduces the problem of calcu-

lating fixpoints to the problem of solving two coupled
cubic equations. Because cubic equations have a
maximum of three solutions, two coupled cubic
equations have a maximum of nine solutions. In general
such coupled equations cannot be solved analytically.
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But for three of the nine fixpoints analytical solutions
exist. These are the fixpoints for which the frequencies of
Wolbachia A are equal in both populations, i.e. for
which p% ¼ q%:

ðp%

1 ; q
%

1 Þ ¼ ð0; 0Þ, (11)

ðp%

2 ; q
%

2 Þ ¼
lB

lA þ lB

;
lB

lA þ lB

� �
, (12)

ðp%

3 ; q
%

3 Þ ¼ ð1; 1Þ. (13)

The stable fixpoint ð1; 1Þ corresponds to the situation
where Wolbachia A has spread to fixation in both
populations, the stable fixpoint ð0; 0Þ to the situation
where Wolbachia A went to extinction in both popula-
tions. The unstable fixpoint ðp%

2 ; q
%

2 Þ characterizes a
threshold. For a full characterization of this threshold,
however, the other fixpoints are necessary (see Fig. 3).
In general it is not possible to give analytical solutions

for all fixpoints. But under certain conditions the
fixpoints show symmetric structures. If both migration
rates equal, m1 ¼ m2; simple algebraic transformations
show that ðx; yÞ is a fixpoint if and only if ðy;xÞ is a
fixpoint. Another symmetry is true for equal CI levels. If
Fig. 3. The equilibrium frequencies (real fixpoints) for the model with

two-way migration (8)–(10). CI levels are lA ¼ lB ¼ 0:9: (e) shows the
equilibrium frequencies for the critical migration rate mk ¼ 0:169:
lA ¼ lB then ðx; yÞ is a fixpoint if and only if ð1� x;
1� yÞ is a fixpoint.

3.1. Totally symmetric case

We will now analyse the most simple case of the
model with two way migration where m ¼ m1 ¼ m2 and
l ¼ lA ¼ lB: Because of these special symmetries analy-
tical solutions for five fixpoints can be given. Further, it
is possible to derive an analytical formula for the critical
migration rate.
Above we derived analytical solutions for the three

fixpoints that have the form ðx; xÞ: Because of the special
symmetries considered here, for two other fixpoints
analytical solutions can be given. These solutions have
the form ðp%; q%Þ ¼ ðx; 1� xÞ: For such fixpoints it holds
that the frequencies of Wolbachia A in one population
equals the frequencies of Wolbachia B in the other
population. Straightforward calculations show that
these fixpoints are solutions of the following cubic
equation:

2lx3
� 3lx2

þ ð2m þ lÞx � m ¼ 0. (14)

This cubic equation has three solutions. They are:

x1 ¼
1

2
x2;3 ¼

1

2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m=l

p
2

. (15)

These three solutions correspond to three fixpoints.
These can easily be determined using the fact that the
fixpoints have the form ðx; 1� xÞ: We note that one of
these fixpoints is ð1

2
; 1
2
Þ and therefore already known from

Eq. (12). Together with the fixpoints given by Eqs. (11)
and (13) we have in total five analytical solutions for the
fixpoints. These are:

ðp%

1 ; q
%

1 Þ ¼ ð0; 0Þ, (16)

ðp%

2 ; q
%

2 Þ ¼
1

2
;
1

2

� �
, (17)

ðp%

3 ; q
%

3 Þ ¼ ð1; 1Þ, (18)

ðp%

4 ; q
%

4 Þ ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

l

q
2

;
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

l

q
2

0
@

1
A, (19)

ðp%

5 ; q
%

5 Þ ¼
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

l

q
2

;
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

l

q
2

0
@

1
A. (20)

The stability of the fixpoints (16)–(18) does not depend
on the parameters. The fixpoints ð0; 0Þ and ð1; 1Þ are
stable, the fixpoint ð12 ;

1
2Þ is unstable. The stability for the

fixpoints given by Eqs. (19) and (20) depends on the
parameters l and m. Note that these fixpoints explicitly
depend on the model parameters. We did a stability
analysis using Mathematica 4.0 and could show that the
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Table 1

Critical migration rate for different parameter constellations

l ¼ lA ¼ lB lAalB

m1 ¼ 0 mkðl; l; 0Þ mkðlA; lB; 0Þ
m1 ¼ cm2 mkðl; l; 0Þomkðl; l; cÞomkðl; l; 1Þ mkðlmax; lmin; 0ÞomkðlA; lB; cÞomkðlmin; lmax; 0Þ
m1 ¼ m2 mkðl; l; 1Þ mkðlmax; lmin; 0ÞomkðlA; lB; cÞomkðlmin; lmin; 1Þ

Note that 0oco1; lmax ¼ maximumflA; lBg; lmin ¼ minimumflA; lBg:

A. Telschow et al. / Journal of Theoretical Biology 235 (2005) 265–274270
fixpoints ðp%

4 ; q
%

4 Þ and ðp%

5 ; q
%

5 Þ are stable if the migration
rate is smaller than 1

8
ð6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 16l

p
Þ: But if the

migration rate is higher than this value the fixpoints
become unstable.
In the previous section we defined the critical

migration rate as the migration rate below which a
stable coexistence of both Wolbachia strains is possible
but above which such a coexistence is not possible. The
fixpoints ðp%

4 ; q
%

4 Þ and ðp%

5 ; q
%

5 Þ describe a state where
both Wolbachia strains coexist. Therefore the criterion
for stability of these fixpoints is also a formula for the
critical migration rate mk:

mk ¼ 1
8
ð6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 16l

p
Þ. (21)

Fig. 3 illustrates the analytical results given so far for
l ¼ 0:9: Shown are the equilibrium frequencies of model
(8)–(10) for different migration rates. Let us first
consider graph (a) which shows the situation without
migration, m ¼ 0: Here, equilibrium frequencies in the
populations are independent of each other. Because each
population can have three equilibrium frequencies, there
are in total nine different equilibria. Four of these are
stable and five are unstable. Stable equilibria are ð0; 0Þ
and ð1; 1Þ: At both fixpoints one Wolbachia strain is at
fixation in both populations. Other stable equilibria are
ð0; 1Þ and ð1; 0Þ: Here, different Wolbachia strains are
fixed in the two populations.
As can be seen in the graphs (b)–(d) this structure is

robust against disturbances in terms of migration. Even
if the migration rate is as high as m ¼ 0:15 there are four
stable and five unstable fixpoints. This means also that a
stable coexistence of the Wolbachia strains is possible
for such high migration rates. Mathematically, this
robustness results from the frequency dependent selec-
tion of Wolbachia. Because the more common CI-type
has a selective advantage relative to the less common
type, low migration has only a minor impact.
If migration increases the advantage of residents

steadily decreases. At the critical migration rate mk a
stable coexistence of the two Wolbachia strains is not
possible anymore. Graph (e) shows the fixpoints for the
critical migration rate mk ¼ 0:169: As can be seen the
system changes its qualitative behavior. There are only
five equilibria among which two are stable. Graph (f)
shows that for very high migration rates (m ¼ 0:25) the
system reduces its number of equilibrium frequencies to
three.

3.2. Asymmetric cases

Model (8)–(10) cannot be solved analytically if
migration rates or CI levels differ. We used two
approaches to analyse these asymmetric cases. First,
upper and lower estimations for the critical migration
rates were derived using the analytical results of the
previous sections. These estimations are summarized in
Table 1. Second, fixpoints and critical migration rates
were determined by numerical iteration.
Because migration rates can differ in this section, we

have to modify the definition of the critical migration
rate. Without loss of generality we assume m1 ¼ cm2

with 0pcp1 and define the critical migration rate for
given lA; lB; and c as the highest value of m2 below which
both Wolbachia strains can stably coexist. The critical
migration rate can be described as a function of the form
mk ¼ mkðlA; lB; cÞ: Using this notation, the previously
derived analytical results of Eqs. (6), (7), and (21) can be
stated as follows:

mkðlA; lB; 0Þ

¼
2ðlA þ lBÞ � lAlB � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlA þ lBÞ

2
� l2AlB � lAl2B

q
l2A

, ð22Þ

mkðl; l; 0Þ ¼
4� l � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2l

p

l
, (23)

mkðl; l; 1Þ ¼ 1
8
ð6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 16l

p
Þ. (24)

These three analytical results will now be used to give
estimations for the critical migration rate for any
parameter constellation. We first discuss the situation
where CI levels are symmetric, l ¼ lA ¼ lB; but migra-
tion rates differ. In this case is mk ¼ mkðl; l; cÞ: A lower
estimation of the critical migration rates is given by
mkðl; l; 0Þ; the critical migration rates of the correspond-
ing mainland–island model. This is because the main-
land–island scenario disfavors one Wolbachia strain
more than any other possible population structure.
Further, an upper estimation can be given by mkðl; l; 1Þ;
the critical migration rates for the totally symmetric
case. This is because every disturbance of the symmetry
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Fig. 4. The critical migration rates as a function of the CI level l ¼

lA ¼ lB: Mainland–island model, m1 ¼ 0; is indicated by the dotted

line, model with two-way migration, m1 ¼ m2; by the solid line.

Critical migration rates were calculated using analytical formula (7)

and (21), respectively.

Table 2

Critical migration rates for asymmetric CI, lAalB; and symmetric

migration, m ¼ m1 ¼ m2

lB lA

1 0.9 0.7 0.5 0.3

1 0.191 0.149 0.093 0.051 0.020

0.9 0.149 0.169 0.100 0.054 0.021

0.7 0.093 0.100 0.128 0.064 0.026

0.5 0.051 0.054 0.064 0.089 0.032

0.3 0.020 0.021 0.026 0.032 0.052

0 0 0 0 0 0
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favors one Wolbachia strain and so reduces the critical
migration rate. Therefore we get for 0oco1:

mkðl; l; 0Þomkðl; l; cÞomkðl; l; 1Þ. (25)

The estimations of Eq. (25) can be simplified. Lineariza-
tion of mkðl; l; 0Þ and mkðl; l; 1Þ lead to the following
more practical estimations:

0:16l � 0:01pmkðl; l; cÞp0:191l. (26)

Inequality (25) is further illustrated in Fig. 4. Differences
between mkðl; l; 0Þ and mkðl; l; 1Þ are rather moderate.
Therefore variation in c causes only minor changes in
mkðl; l; cÞ: In other words, asymmetries with respect to
migration has only a minor impact on the outcome of
the critical migration rate.
Next, we consider the general case where both

migration rates and CI levels differ. Upper and lower
estimations can be derived from the analytical solutions
for the mainland–island model, mkðlA; lB; 0Þ: We define
lmax ¼ maximumflA; lBg; lmin ¼ minimumflA; lBg: A lower
estimation for mkðlA; lB; cÞ is given by the critical
migration rate for the mainland–island scenario where
the Wolbachia strain with the higher CI level is fixed on
the mainland, whereas an upper estimation is given for
the situation where the other strain is fixed on the
mainland:

mkðlmax; lmin; 0ÞomkðlA; lB; cÞomkðlmin; lmax; 0Þ. (27)

For the case that CI levels differ but migration rates are
equal, a better upper estimation can be given:

mkðlmax; lmin; 0ÞomkðlA; lB; 1Þomkðlmin; lmin; 1Þ. (28)

Table 2 shows some critical migration rates for
asymmetric CI and symmetric migration. High critical
migration rates are achieved if CI levels are high and
equal. The highest value of mk ¼ 0:191 is found for lA ¼

lB ¼ 1: In general, the critical migration rates decrease
with decreasing CI levels. These can still be remarkably
high when CI levels are equal. Low CI levels of lA ¼

lB ¼ 0:3 result in mk ¼ 5:2%: However, asymmetric CI
strongly reduces the critical migration rates. Although
the CI levels of lA ¼ 1 and lB ¼ 0:5 are rather high, the
critical migration rate is mk ¼ 5:1%: This shows that the
critical migration rate is sensitive with respect to
asymmetric CI. This is remarkable and in contrast to
asymmetric migration.
4. Model with incomplete transmission rate

Finally, we discuss how the critical migration rates
changes for incomplete transmission rates of Wolbachia.
To model this we have to consider uninfected indivi-
duals as a third cytotype. We assume that infected
females inherit their infection to the fraction t of their
offspring whereas the rest, 1� t; becomes uninfected.
Further uninfected females have uninfected offspring.
Transmission rate is assumed to be the same for both
Wolbachia strains. With these assumptions model
(8)–(10) can be easily extended (for a mathematical
description see Telschow et al., 2002b).
This extended model cannot be solved analytically.

Therefore we used numerical iterations to determine
critical migration rates. These are shown in Fig. 5 for the
four transmission rates t ¼ 100%; 99%, 95% and 90%.
Only symmetric CI levels are considered (l ¼ lA ¼ lB).
The following general conclusions can be made. First, the
critical migration rates decrease with decreasing transmis-
sion rate. Nevertheless, critical migration rates can
achieve high values such as mk ¼ 7:8% even for a CI
level of l ¼ 0:5 and the low transmission rate of t ¼ 95%:
Second, the critical migration rate becomes zero if the CI
levels of the Wolbachia strains are low. This is because
some CI is necessary for the persistence of Wolbachia if
transmission is incomplete. Note that the critical migra-
tion rate for complete transmission is always positive if
the CI levels are positive. Finally we remark that these
conclusion hold for both, the mainland–island model and
model with two-way migration although critical migra-
tion rates are higher for the latter model.
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Fig. 5. Critical migration rate as a function of the CI level l ¼ lA ¼ lB

for incomplete transmission rates. Graph (a) shows critical migration

rates for the mainland–island model, m1 ¼ 0; graph (b) for the model

with two-way migration, m1 ¼ m2: Four different transmission rates

are shown: (1) t ¼ 100% (black squares), (2) t ¼ 99% (white triangles),

(3) t ¼ 95% (gray diamonds), and (4) t ¼ 90% (white circles).
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5. Discussion

In this article, we investigated under which conditions
two Wolbachia strains can stably coexist. We analysed a
population genetic model with two host populations and
migration between them. The main finding was that
Wolbachia-induced bidirectional CI allows coexistence
of the two strains up to a critical migration rate. A full
analytical description of the critical migration rate was
given (see Table 1). Our results suggest that critical
migration rates in experimentally well-studied systems
could be remarkably high. Cytoplasmic incompatibility
in Culex and Nasonia is nearly complete (Guillemaud
et al., 1997; Bordenstein et al., 2001) resulting in a
critical migration rate of 19% per generation. CI in
Drosophila is more variable, ranging from 0.3 to 0.7
(Hoffmann and Turelli, 1997 for a review), which causes
critical migration rates between 5% and 13%.
These results generally show that different Wolba-

chia infections in parapatric host populations can be
maintained in face of substantial migration rates
between them. In earlier studies we showed that
bidirectional CI reduces the gene flow between para-
patric host populations (Telschow et al., 2002a, b) and
selects for premating isolation (Telschow et al., 2005).
The finding that bidirectional CI can persist even under
high rates of migration broadens the possible situations
under which bidirectional CI can cause pre- or post-
zygotic isolation and therefore makes it more likely that
Wolbachia can promote speciation.
Although there is a huge amount of literature on how

post-zygotic isolation might promote speciation (see
Coyne and Orr, 2004 for a review), traditionally research-
ers have focused on nuclear-based incompatibilities (NI)
and neglect Wolbachia-induced CI. Bordenstein (2003)
pointed out the following difference between them.
Whereas bidirectional CI acts in the F 1 generation by
reducing the number of the offspring in a hybrid mating,
NI is mostly acting in the F 2 generation because the
mating incompatibilities are caused by recessive mutations.
As shown in Telschow et al. (2005) this results in a
stronger selection pressure of bidirectional CI to evolve
prezygotic isolation than by recessive NI. Here, we want to
point out another difference between these two post-
zygotic isolation mechanisms. That is that bidirectional CI
can persist up to much higher migration rates than
recessive NI. Using a well-studied model for recessive NI
(Servedio, 2000) we calculated numerically the critical
migration rates and found that the maximum possible
value for the critical migration rate is 8% per generation if
two population with symmetric migration are considered
(Telschow et al., 2005). It should be noted that in the case
of bidirectional CI such a critical migration rate is
achieved by CI levels of 0.5, and much higher critical
migration rates result with higher levels of CI (e.g. a CI
level of 0.9 gives a critical migration rate of 16.9%). Taken
this together, these results show that bidirectional CI is
much more stable in face of migration than recessive NI.
To estimate the impact of bidirectional CI on host

speciation it is necessary to know how often Wolba-

chia hybrid zones occur in nature. Honestly, we do not
know the answer yet. This is partly because of the lack
of empirical data. Further, theoreticians have neglected
this problem so far (but see Hurst and Schilthuizen,
1998). Here, we argue that horizontal transmission of
Wolbachia might play a crucial role. It has been shown
that horizontal transmission of Wolbachia can occur
between species on an evolutionary time-scale (Werren
et al., 1995; Clancy and Hoffmann, 1996). Horizontal
transmission might affect the frequency of Wolbachia

hybrid zones in two different ways. First, it generates
Wolbachia hybrid zones if one species gets horizontally
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infected with two different Wolbachia strains. Second, it
might affect the length of time such a hybrid zone can
persist. This is because horizontal transmission might
generate double infections within a hybrid zone. These
are expected to go to fixation in both populations
(Frank, 1998) which would destroy the hybrid zone.
Taken this together, high rates of horizontal transmis-
sion might generate many Wolbachia hybrid zones but
also cause them to persist for a relatively short time,
whereas low horizontal transmission rates have the
opposite effect. A more detailed analysis is beyond the
scope of this paper and remains a topic for future study.
In order to obtain analytical results we choose a

rather simple population structure in our models. More
complex population structures were analysed by Barton
and Hewitt (1989) to understand the movement of
hybrid zones caused by underdominant chromosome
arrangements. They considered a continuous population
structure which can be heterogeneous with respect to the
population density. One of their major results is that
hybrid zones tend to stay in regions with low population
density. Based on this Turelli (1994) argued that
bidirectional CI might also create stable hybrid zones
along dispersal barriers. Our results strongly support
this view and suggest that such hybrid zones can persist
even if the dispersal barriers are weak.
Our modeling totally neglects stochasticity. In general,

all model parameters (CI levels, migration, and transmis-
sion rate) could be stochastic. Although we have not
modeled this so far some general conclusions can be
made. First, because stochastic variables randomly favor
one Wolbachia strain we expect that the critical migration
rate can be overvalued with a certain probability. This
can lead to the loss of one Wolbachia strain even if the
mean values of the parameters would allow a stable
coexistence. Second, we showed in the deterministic
model that the critical migration rate is robust against
asymmetric migration rates and sensitive to asymmetric
changes of the CI levels. Therefore we expect that
stochastic effects related to the migration rate have only
minor impact on the stability, whereas stochasticity of CI
might much more strongly destabilize the system.
In summary, our results show that a stable coex-

istence of two Wolbachia strains between parapatric
host populations is possible up to high migration rates.
These results generally support the idea that Wolbachia-
induced bidirectional CI can stably maintained and
therefore promote genetic divergence and specification
of their hosts.
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